skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agbakansi, Stanley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Two-dimensional (2D) materials have recently garnered significant interest due to their novel and emergent properties. A plethora of 2D materials have been discovered and intensively studied, such as graphene, hexagonal boron nitride, transitionmetal dichalcogenides (TMDCs), and other metallic compound MXenes (nitrides, phosphides, and hydroxides), as well as elemental 2D materials (borophene, germanene, phosphorene, silicene, etc.). Considering the widespread interest in conventional van der Waals 2D materials, two-dimensional metallic nanosheets (2DMNS), a recent addition to the 2D materials family, have exhibited diverse potential spanning optics, electronics, magnetics, catalysis, etc. However, the close-packed, non-layered structure and non-directional, isotropic bonding of metallic materials make it difficult to access metals in their 2D forms, unlike 2D van der Waals materials, which have intrinsically layered structure (strong in-plane bonding in addition to the weak interlayer interaction). Until now, conventional top-down and bottom-up synthesis schemes of these 2DMNS have encountered various limitations such as precursor availability, substrate incompatibility, difficulty of control over thickness and stoichiometry, limited thermal budget, etc. To overcome these manufacturing limitations of 2DMNS, here we report a facile, rapid, large-scale, and cost-effective fabrication technique of nanometer-scale copper (Cu) 2DMNS via iterative rolling, folding, and calendering (RFC) that is readily generalizable to other conventional elemental metallic materials. Overall, we successfully show a scalable fabrication technique of 2DMNS. 
    more » « less
  2. null (Ed.)
    Two-dimensional (2D) materials have recently garnered significant interest due to their novel and emergent properties. A plethora of 2D materials have been discovered and intensively studied, such as graphene, hexagonal boron nitride, transition-metal dichalcogenides TMDCs), and other metallic compound MXenes (nitrides, phosphides, and hydroxides), as well as elemental 2D materials (borophene, germanene, phosphorene, silicene, etc.). Considering the widespread interest in conventional van der Waals 2D materials, two-dimensional metallic nanosheets (2DMNS), a recent addition to the 2D materials family, have exhibited diverse potential spanning optics, electronics, magnetics, catalysis, etc. However, the close-packed, non-layered structure and non-directional, isotropic bonding of metallic materials make it difficult to access metals in their 2D forms, unlike 2D van der Waals materials, which have intrinsically layered structure (strong in-plane bonding in addition to the weak interlayer interaction). Until now, conventional top-down and bottom-up synthesis schemes of these 2DMNS have encountered various limitations such as precursor availability, substrate incompatibility, difficulty of control over thickness and stoichiometry, limited thermal budget, etc. To overcome these manufacturing limitations of 2DMNS, here we report a facile, rapid, large-scale, and cost-effective fabrication technique of nanometer-scale copper (Cu) 2DMNS via iterative rolling, folding, and calendering (RFC) that is readily generalizable to other conventional elemental metallic materials. Overall, we successfully show a scalable fabrication technique of 2DMNS. 
    more » « less